236 research outputs found

    Attracting and Retaining Women in the Transportation Industry

    Get PDF
    This study synthesized previously conducted research and identified additional research needed to attract, promote, and retain women in the transportation industry. This study will detail major findings and subsequent recommendations, based on the annotated bibliography, of the current atmosphere and the most successful ways to attract and retain young women in the transportation industry in the future. Oftentimes, it is perception that drives women away from the transportation industry, as communal goals are not emphasized in transportation. Men are attracted to agentic goals, whereas women tend to be more attracted to communal goals (Diekman et al., 2011). While this misalignment of goals has been found to be one reason that women tend to avoid the transportation industry, there are ways to highlight the goal congruity processes that contribute to transportation engineering, planning, operations, maintenance, and decisions—thus attracting the most talented individuals, regardless of gender. Other literature has pointed to the lack of female role models and mentors as one reason that it is difficult to attract women to transportation (Dennehy & Dasgupta, 2017). It is encouraging to know that attention is being placed on the attraction and retention of women in all fields, as it will increase the probability that the best individual is attracted to the career that best fits their abilities, regardless of gender

    Optimal Bus Stop Spacing for Minimizing Transit Operation Cost

    Get PDF
    With the increasing attention to finance issues relative to transit operation, a bus stop spacing model is generated with the aim at minimizing the operation cost without impact on transit accessibility. Two cost functions are considered in the model including passenger access cost and in-vehicle passenger stopping cost aiming at minimizing total cost. A bus route in Portland, Oregon, USA is examined as an example using Archived Bus Dispatch System (BDS) data provided by TriMet, the regional transit provider for the Portland, Oregon metropolitan area. Based on the optimization model, the theoretical optimized bus stop spacing is 930 feet comparing to the current value 802 feet

    Some observed queue discharge features at a freeway bottleneck downstream of a merge

    Get PDF
    Details of traffic evolution were studied upstream and downstream of a freeway bottleneck located near a busy on-ramp. It is shown that on certain days the bottleneck became active upon dissipation of a queue emanating from somewhere further downstream. On such occasions, the bottleneck occurred at a fixed location, approximately one kilometer downstream of the merge. Notably, even after the dissipation of a downstream queue, the discharge flows in the active bottleneck were nearly constant, since the cumulative counts never deviated much from a linear trend. The average bottleneck discharge flows were also reproducible from day to day. The diagnostic tools used in this study were curves of cumulative vehicle arrival number versus time and cumulative occupancy versus time constructed from data measured at neighboring freeway loop detectors. Once suitably transformed, these cumulative curves provided the measurement resolution necessary to observe the transitions between freely flowing and queued conditions and to identify some important traffic features

    Some traffic features at freeway bottlenecks

    Get PDF
    Observations from two freeway bottlenecks in and near Toronto, Canada indicate that the average rate vehicles discharge from a queue can be 10% lower than the flow measured prior to the queue\u27s formation. Absent any influences from downstream, the queue discharge flows exhibited nearly stationary patterns that alternated between higher and lower rates. These alternating flow patterns were especially evident at one of the two sites, although the feature occurred at both sites during periods that immediately followed the onset of upstream queuing; i.e. a queue\u27s formation was always accompanied by a relatively low discharge rate followed later by a temporary surge in the discharge flow. When plotted cumulatively over time, however, the counts of discharging vehicles generally did not deviate by more than about 50 vehicles from a trend line of constant slope. Thus, the discharge flows are described as being `nearly\u27 constant; i.e. they varied (slightly) about a fixed rate. At each site, this average discharge rate exhibited little deviation from day to day. The present findings came by visually comparing transformed curves of cumulative vehicle arrival number vs time and cumulative occupancy vs time measured at neighboring loop detectors. This treatment of the data provided clear presentations of some important traffic features and this facilitated a detailed study of bottleneck flows

    Possible explanations of phase transitions in highway traffic

    Get PDF
    It is shown that all the phase transitions in and out of freely flowing traffic reported earlier for a German site could be caused by bottlenecks, as are all the transitions observed at two other sites examined here. The evidence suggests that bottlenecks cause these transitions in a predictable way, and does not suggest that stoppages (jams) appear spontaneously in free flow traffic for no apparent reason. It is also shown that many of the complicated instability phenomena observed at all locations can be explained qualitatively in terms of a simple Markovian theory specific to traffic that does not necessarily include spontaneous transitions into the queued state as a feature

    Seminar #294: Transforming Transportation Through Connectivity

    Get PDF
    The transportation system is the backbone of the United States\u27 economy, and transportation is an essential part of everyday life for American citizens. It is essential that the transportation system continue to provide accessibility and connectivity to an ever-evolving global economy. A key way to do so is to embrace, develop and implement new technologies. One of the newest and most promising facets of transportation-related technology is in the field of connected mobility. The vision behind connected mobility is of a transportation system where vehicles, travelers, and infrastructure are all wirelessly connected with one another and able to transmit real-time data about things like weather, location, and vehicle and infrastructure status. Such a degree of connectivity could have substantial benefits for the safety, mobility, and sustainability of the domestic transportation system, including accident prevention and congestion reduction. In recent years, major strides have been made into the research and development of connected mobility technology and some field-testing has commenced, but there is a need for more attention and investment from stakeholders throughout the transportation community and beyond.https://pdxscholar.library.pdx.edu/trec_seminar/1016/thumbnail.jp

    The Geometry of Most Probable Trajectories in Noise-Driven Dynamical Systems

    Full text link
    This paper presents a heuristic derivation of a geometric minimum action method that can be used to determine most-probable transition paths in noise-driven dynamical systems. Particular attention is focused on systems that violate detailed balance, and the role of the stochastic vorticity tensor is emphasized. The general method is explored through a detailed study of a two-dimensional quadratic shear flow which exhibits bifurcating most-probable transition pathways.Comment: 8 pages, 7 figure

    Non-Equilibrium Statistical Physics of Currents in Queuing Networks

    Get PDF
    We consider a stable open queuing network as a steady non-equilibrium system of interacting particles. The network is completely specified by its underlying graphical structure, type of interaction at each node, and the Markovian transition rates between nodes. For such systems, we ask the question ``What is the most likely way for large currents to accumulate over time in a network ?'', where time is large compared to the system correlation time scale. We identify two interesting regimes. In the first regime, in which the accumulation of currents over time exceeds the expected value by a small to moderate amount (moderate large deviation), we find that the large-deviation distribution of currents is universal (independent of the interaction details), and there is no long-time and averaged over time accumulation of particles (condensation) at any nodes. In the second regime, in which the accumulation of currents over time exceeds the expected value by a large amount (severe large deviation), we find that the large-deviation current distribution is sensitive to interaction details, and there is a long-time accumulation of particles (condensation) at some nodes. The transition between the two regimes can be described as a dynamical second order phase transition. We illustrate these ideas using the simple, yet non-trivial, example of a single node with feedback.Comment: 26 pages, 5 figure

    Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies

    Get PDF
    Mutations affecting skeletal muscle isoforms of the tropomyosin genes may cause nemaline myopathy, cap myopathy, core-rod myopathy, congenital fiber-type disproportion, distal arthrogryposes, and Escobar syndrome. We correlate the clinical picture of these diseases with novel (19) and previously reported (31) mutations of the TPM2 and TPM3 genes. Included are altogether 93 families: 53 with TPM2 mutations and 40 with TPM3 mutations. Thirty distinct pathogenic variants of TPM2 and 20 of TPM3 have been published or listed in the Leiden Open Variant Database (http://www.dmd.nl/). Most are heterozygous changes associated with autosomal-dominant disease. Patients with TPM2 mutations tended to present with milder symptoms than those with TPM3 mutations, DA being present only in the TPM2 group. Previous studies have shown that five of the mutations in TPM2 and one in TPM3 cause increased Ca2+ sensitivity resulting in a hypercontractile molecular phenotype. Patients with hypercontractile phenotype more often had contractures of the limb joints (18/19) and jaw (6/19) than those with nonhypercontractile ones (2/22 and 1/22), whereas patients with the non-hypercontractile molecular phenotype more often (19/22) had axial contractures than the hypercontractile group (7/19). Our in silico predictions show that most mutations affect tropomyosin–actin association or tropomyosin head-to-tail binding
    • …
    corecore